The long-term effects of red light-emitting diode irradiation on the proliferation and differentiation of osteoblast-like MC3T3-E1 cells.
نویسندگان
چکیده
Low level laser therapy (LLLT) affects various biological processes, and it is said that the non-coherent light of the light-emitting diode (LED) has a similar action. The purpose of this study was to examine the effects of LED light on the proliferation and differentiation of osteoblasts-like MC3T3-E1 cells cultured in osteogenic differentiation medium (ODM) over the long term. Cells were irradiated with red LED light of 630 nm at three doses; 0.5J/cm², 1.5J/cm² or 3.0J/cm² for the cell proliferation activity assay, and at 0.5J/cm² for the osteogenic differentiation activity assay. The former activity was checked by counting the number of viable cells using Trypan blue dye. The latter activity was evaluated by alkaline phosphatase (ALP) staining and examining the mRNA expression of the osteopontin (OPN) gene using real-time quantitative PCR. The number of viable MC3T3-E1 cells showed a tendency to increase after the irradiation at all three energy densities in comparison with a non-irradiation group (control group). In particular, there was a remarkable 3.34-fold increase in the group irradiated with 3.0J/cm² on day 7 after starting the culture. On culture day 15, there was a tendency for the red LED irradiation group (0.5 J/cm²) to exhibit more staining for ALP than the control group, and the expression of OPN was significantly higher in the irradiation group on culture day 16. In conclusion, low level red LED light can enhance MC3T3-E1 cell proliferation and osteogenic differentiation when the cells are cultured for a relatively long time.
منابع مشابه
Dihydrotestosterone, a robust promoter of osteoblastic proliferation and differentiation: understanding of time-mannered and dose-dependent control of bone forming cells
Objective(s): The present study was aimed to evaluate the time-mannered and dose-dependent effects of 5α-dihydrotestosterone (5α-DHT) on the proliferation and differentiation of bone forming cells using MC3T3-E1 cells. Materials and Methods: Cell proliferation was analyzed using MTS and phase contrast microscopic assays. Osteogenic differentiation was assessed through a series of in vitro exper...
متن کاملSynthesis, in vitro evaluation and biological studies of copper-containing 58S bioactive glass
Cu-substituted 58S bioactive glasses (0-10%mol CuO) were synthesized by sol-gel method and the effect of copper substitution for calcium on their biodegradability, bone-like apatite formation, cell proliferation, alkaline phosphatase activity of M3T3-E1 osteoblast cells and antibacterial efficiency were investigated. The results of x-ray diffraction (XRD) and Fourier transform infrared spectros...
متن کاملBovine Collagen Peptides Compounds Promote the Proliferation and Differentiation of MC3T3-E1 Pre-Osteoblasts
OBJECTIVE Collagen peptides (CP) compounds, as bone health supplements, are known to play a role in the treatment of osteoporosis. However, the molecular mechanisms of this process remain unclear. This study aimed to investigate the effects of bovine CP compounds on the proliferation and differentiation of MC3T3-E1 cells. METHODS Mouse pre-osteoblast cell line MC3T3-E1 subclone 4 cells were t...
متن کاملNeuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling
High dose glucocorticoid (GC) administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor) is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteobl...
متن کاملAKT2 is involved in the IL-17A-mediated promotion of differentiation and calcification of murine preosteoblastic MC3T3-E1 cells
Interleukin (IL)‑17A exhibits pleiotropic biological activities and serves a role in the progression of periodontitis. However, data describing the association between IL‑17 and osteogenesis are not conclusive. It was previously demonstrated that RAC‑β serine/threonine protein kinase (AKT2)‑specific knockdown in MC3T3‑E1 cells weakened osteogenic effects. The role of AKT2 in the regulation of I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Kobe journal of medical sciences
دوره 60 1 شماره
صفحات -
تاریخ انتشار 2014